
ParGAL: A Scalable Grid-Aware Analysis Library for Ultra Large Datasets
Robert L. Jacob∗ Xiabing Xu Jayesh Krishna Tim Tautges Robert Latham

Argonne National Laboratory

Kara Peterson Pavel Bochev
Sandia National Laboratory

Mary Haley
National Center for Atmospheric Research

ABSTRACT

Many fields that employ computation require extensive analysis of
the output from a petascale simulation of a grid- (or mesh)-based
application in order to complete their scientific goals or produce
a visual image or animation. Often this analysis cannot be done
in-situ because it requires calculating time-series statistics from
state sampled over the entire length of the run or analyzing the re-
lationship between similar time series from previous simulations
or observations. The programs that perform this analysis are not
nearly as flexible in their choice of grids or as high-performing as
the primary applications. We will describe a new Parallel Gridded
Analysis Library (ParGAL) that performs data-parallel versions of
several common analysis algorithms on data from a structured or
unstructured grid simulation. The library builds on several scal-
able systems starting with the Mesh Oriented DataBase (MOAB).
MOAB is a library for representing mesh data that supports struc-
tured, unstructured finite element and polyhedral grids and also sup-
ports parallel operations on those grids including loading to and
from disk using parallel I/O. We are using the Parallel-NetCDF
(PNetCDF) library to perform parallel I/O operations between the
popular NetCDF format and ParGAL. Finally, we also make use
of Intrepid, an extensible library for computing operators (such as
gradient, curl, divergence, etc.) acting on discretized fields. The
design and performance of ParGAL will be described and an exam-
ple of its application to climate compared to a widely used tool is
given.

Index Terms: Petascale Techniques, Scalability Issues, Data
Transformation and Representation

1 INTRODUCTION

Today’s petascale systems, such as those operated by the DOE
Leadership Computing Facilities at Argonne (ALCF) and Oak
Ridge National Laboratories (OLCF), will lead to advances in sev-
eral scientific fields. Many fields such as climate, nuclear engineer-
ing, combustion and plasma physics are using these systems to run
large, high-resolution versions of their grid- or mesh-based numer-
ical models [7]. In most applications of those models, new knowl-
edge is only gained after significant analysis is done on the output of
the petascale simulation, often referred to as “post-processing”. In
the case of climate modeling the direct output, which may measure
in the terabytes, from a single multi-million core-hour simulation
tells little about the climate. It is only after multivariate time-series
analysis (post-processing) is performed on that data and compared
with other runs and observations that something new can be learned.

The programs currently used to perform this analysis in climate
and other fields are often not nearly as flexible or high-performing
as the primary applications. They are often single threaded and/or
32-bit and may assume structured grids are being used. They either
break or require workarounds for the ultra-large unstructured-grid

∗e-mail: jacob@mcs.anl.gov

data that is becoming the norm in computational science. In climate
science, they are already a bottleneck [25]. Ultra-large data sets
present not just a complexity and performance challenge to current
tools, but also a memory challenge. The single threaded programs
will typically assume they can read all the data in to memory. This
requires further workarounds where the researcher uses command
line tools to reduce the size of the data to something that can be
held in the memory of single node.

The hardware to scalably analyze multi-terabyte gridded output
data is available. Both the ALCF and OLCF have dedicated “Data
Analysis and Visualization” (DAV) clusters attached to the same
disk as the primary compute platform and containing hundreds of
“fat” nodes with powerful CPU’s, parallel file systems and large
amounts of memory (lens at OLCF and eureka at ALCF). But there
is a distinct lack of analysis software that can take advantage of
those platforms. The President’s Council of Advisors on Science
and Technology (PCAST) 2010 review of Networking Information
Technology Research and Development (NITRD) [12] said that one
of the major challenges in data analysis was “computational models
and languages suited for expressing data analysis algorithms that
map onto large-scale, parallel systems.”

Programs such as Parallel-R [18] provide data-parallel versions
of some of its statistical analysis functions. However it does not
support operations on a grid. To accurately calculate gradients and
other features from output data, it is necessary for the tool to have
a representation of the discretization used in the original model.
Tools such as GLEAN [24] or DIY [16] provide facilities for data
staging and movement in an HPC environment but not the grid-
aware data model we need.

In this paper, we describe a new Parallel Gridded Analysis Li-
brary (ParGAL,§3) that is built on a computational model that can
map onto large analysis clusters (or petascale systems) and explic-
itly represent the discretizations used in the models. ParGAL pro-
vides high-level parallel algorithms that can operate on structured
or unstructured grid data in parallel. The library builds on several
existing scalable systems (§2) for its data model, algorithm expres-
sion and I/O. We are using ParGAL to build a data-parallel version
of a popular domain-specific analysis and visualization scripting
language which will both allow it to scale and operate on multiple
grid types. (§4).

2 COMPONENTS OF PARGAL

Many of the features we wanted ParGAL to have, such as a data
model for structured and unstructured grids and a way to define
operations within and across grids, were already implemented in
other systems. Although all the ParGAL code is new, it has been
built on several existing pieces of software.

2.1 MOAB

MOAB is a library for query and modification of structured and
unstructured mesh, and field data associated with the mesh[23].
MOAB can represent all entities typically found in the finite el-
ement zoo, as well as polygons and polyhedra. Structured mesh
is supported as well, with a special interface providing parametric

block information[21]. The data model implemented by MOAB
references four distinct data types:

• Entity: vertices, triangles, quads, etc.

• Entity Set: arbitrary collection of entities and other sets

• Interface: object through which all other functions are called,
i.e. the database

• Tag: information stored on Entity, Entity Set, and Interface
objects

This data model has proven remarkably versatile, able to represent
most semantic information associated with typical meshes, includ-
ing boundary conditions, solution fields, geometric associativity,
and parallel partitions. Internally, MOAB uses an array-based stor-
age model; this allows efficient access to and iteration over fields
associated with mesh entities, including vertex- and element-based
variables. MOAB uses the HDF5 library for its native save/restore
format[1].

For parallel access, mesh is represented and queried in MOAB
as a serial mesh local to a processor, with information about the
parallel nature of the model accessed (and stored) in the form of
sets and tags. For convenience, MOABs ParallelComm class
also has functions that provide this data, and for performing com-
monly needed parallel functions. For any entity shared with other
processor(s), MOAB stores both the remote processor rank(s) and
the handle(s) of the entity on those processor(s), on all processors
sharing the entity[22]. Mesh models are initialized in parallel by
reading mesh from a single file in parallel, using a partition stored
as entity sets in the file. A partitioning tool has been implemented
by interfacing with the Zoltan partitioning library[8].

The underlying structured grid representation in MOAB stores
connectivity information implicitly, for memory efficiency, while
storing vertex locations explicitly, for generality. For ParGAL, spe-
cific enhancements were made to MOAB in the area of structured
grid representation and efficiency:

• A new convenience API was added to MOAB for access-
ing structured grid parametric information directly[20]; in ad-
dition, structured grid “boxes”1, and parametric information
about each box, is stored in the form of entity sets and tags on
those sets, so that it is accessible through the standard MOAB
data model.

• Various strategies were implemented for partitioning a struc-
tured mesh over processors; these strategies have different
characteristics in terms of load balance, size of communica-
tion interface between processors, and how closely the layout
of vertex or element fields in memory matches the layout of
those variables when stored on disk.

• The process of finding shared mesh interfaces in the paral-
lel representation of a mesh was optimized to take advantage
of structured grid information. Given the partition method
and parametric bounds of sub-domains, handles for mesh ver-
tices on sub-domain boundaries can be computed directly and
matched between neighboring processors. In many cases this
reduces the time required to initialize a parallel structured
mesh by more than an order of magnitude[22].

1A structured grid box is a rectangular region of structured grid accessi-
ble through an i, j, k parameterization.

2.2 Intrepid

Intrepid is a Trilinos [11] package for advanced discretizations of
Partial Differential Equations (PDEs) [3]. The abstract framework
for compatible discretizations [4] provides the mathematical foun-
dation of Intrepid. This framework prompted reevaluation of con-
ventional software design for PDEs, which usually focuses on a
single discretization paradigm. In contrast, Intrepid aims to trans-
late mathematical similarities between finite elements, finite vol-
ume and finite difference methods, identified in [4] into software-
based similarities. Intrepid has been used to implement numerical
methods for PDEs ranging from mimetic least squares for magne-
tostatics [6] to control volume finite element methods for semicon-
ductor equations [5].

Intrepid offers a wide range of cell-based tools for the implemen-
tation of finite element, finite volume and finite difference methods
for PDEs. The package represents a middleware between higher-
level software infrastructures and lower-level cell-based numerics
for, e.g., evaluation of basis functions, coordinate transformations,
surface parameterizations, and integration of fields over cells, cell
faces and cell edges. Intrepid is designed to operate locally on
batches of cells having the same topology and data type. A key
aspect of the design is that Intrepid separates cell topology from
the reconstruction, i.e., the field evaluation process. In other words,
a reconstruction “basis” and its evaluation points are not tied to a
particular cell topology. This design approach allows Intrepid users
to “mix and match” cell topologies with reconstruction operators
(“bases”) and evaluation points, which enables a virtually unlim-
ited generation of new discretization methods from a small number
of basic components.

The ability to “mix and match” an extensive range of fields, cells
and evaluation points enables Intrepid to interpret and evaluate vir-
tually any kind of numerical data generated by computer simula-
tions. This makes the package a powerful and flexible tool for data
analysis and processing. The ParGAL effort is the first utilization
of Intrepid in this application context. ParGAL uses Intrepid to im-
plement forward data operations such as computation of divergence
and vorticity from a given velocity field and interpolation between
different grids. In addition, ParGAL takes advantage of the dis-
cretization capabilities of Intrepid to implement operations such as
computation of a stream function and a velocity potential from a
given velocity field.

Traditional spherical harmonics approaches for these tasks re-
quire global data. In contrast, because Intrepid is rooted in local
cell-based operations it does not require global data and can com-
pute the stream function and the potential on any limited domain.
When combined with MOAB support for parallel mesh-based com-
munication, the local nature of Intrepid operations makes the com-
bination particularly well-suited for parallel analysis of simulation
data.

2.3 PNetCDF

The climate community makes heavy use of the NetCDF self-
describing portable file format and its associated programming in-
terface [17]. Portable in this context means the dataset can be
moved from machines with different byte-endianess or datatype
sizes without needing to change the client code reading or writing
those files. Self-describing means the dataset has enough internal
structure that client code can use the associated APIs to determine
the kind and quantity of variables contained in the dataset. Fur-
ther, the NetCDF library provides a means for assigning “attributes”
(metadata) to variables, dimensions and datasets, offering yet more
documentation for the data contained therein. Collaborators at dif-
ferent institutions running on different computing resources rely on
both the self-describing and portability features of NetCDF to un-
derstand colleagues’ work now and in the future.

For parallel I/O needs, the Parallel-NetCDF project [13] pro-
vides a parallel programming interface. Parallel-NetCDF maintains
the same NetCDF file format and same concepts of attributes, di-
mensions, and variables, but provides a alternate (though similar)
API for parallel programming. This alternate API introduces MPI
concepts such as communicators and “info” tuning parameters, but
retains the spirit of the serial API. Parallel I/O happens through
the MPI-IO [14] interface, but the library can abstract away details
such as file views and MPI datatypes. Parallel-NetCDF emphasizes
“collective I/O”, where all processes participate in an I/O operation.
Typically, the MPI-IO library can apply several powerful optimiza-
tions to a collective I/O workload. Particularly useful are so-called
“deferred mode” parallel operations, where the application specifies
a series of data read operations, then frees Parallel-NetCDF to ex-
ecute them all asynchronously. This allows the library to combine
both I/O and communication operations for maximum efficiency.

While Parallel-NetCDF (and serial NetCDF) provide a good in-
terface for regular array access, climate analysis models have grown
more sophisticated in the years since these I/O libraries were first
designed. Integrating Parallel-NetCDF into MOAB, discussed in
Section 2.1, allows us to support these more sophisticated analysis
models. MOAB provides the richer description of the grids used in
climate analysis, and Parallel-NetCDF provides the optimized par-
allel I/O for that analysis.

3 PARGAL ARCHITECTURE

ParGAL leverages the capabilities of the Mesh Oriented datABase
(MOAB), Parallel-Netcdf (PNetCDF) and Intrepid libraries, to ac-
complish efficient, parallel, discretization-accurate data analysis.
The design features of the current implementation of ParGAL are:

• Modularity Its modular design enables various components
to easily interact with each other.

• Scalability ParGAL is performance- and scalability-oriented.
Each algorithm either implements the best known parallel al-
gorithm or is otherwise carefully designed in order to achieve
the highest scalable performance.

• Portability The codes strictly adhere to the C++ Standard
[19] which is meant to be portable across various parallel sys-
tems.

• Generality ParGAL is designed to simplify implementation
and evaluation of a wide variety of discretization-specific al-
gorithms on a wide range of grid types.

• Large Scale Data Sets It has been designed for handling very
large scale structured and unstructured grid data sets.

ParGAL is designed to greatly outperform conventional single
threaded analysis tools. Its interfaces are designed to encapsulate
details about file reading, parallel partitioning, and mesh-based par-
allel communication, so that the application designer can focus on
analysis.

3.1 Software Architecture
There are four main components in ParGAL: Fileinfo, PcVAR,
Analysis and Support. They served as the building blocks within
ParGAL and also for the user applications. Figure 1 illustrates the
architecture of ParGAL and the interaction among each component.
The details of each component are given below.

3.1.1 Fileinfo
The Fileinfo class provides an abstraction of a single file or multi-
ple files and a higher level interface to hide lower level details of
file management, including opening and closing a file, looking up

ParGALApplication

Mesh Oriented datABase (MOAB)

Parallel NetCDF HDF5

PROF

ERR

MEM

LOG. . . .

Fileinfo PcVAR Analysis

File

User

Native

Intrepid

Figure 1: ParGAL Architecture.

which file contains a user-specified time step, retrieving informa-
tion about file metadata, etc. It also expands the capability of the
lower level libraries used. The current MOAB NetCDF/Parallel-
NetCDF reader stores file metadata for a single series of files. With
Fileinfo, multiple instances of the class can be used to store file
metadata for multiple different file series.

3.1.2 PcVAR

ParGAL is designed to work with various large scale structured and
unstructured numerical grids. A MOAB mesh instance serves as the
database or container for most of the “heavy” data, while ParGAL
provides a higher-level index and summary of that data. PcVAR is
built on top of MOAB to encapsulate the details of variable data
access. For instance, it keeps track of whether a specific time step
is loaded. If not, MOAB will be used to load data into the memory
and a marker will be set to facilitate later access. Otherwise, the
marker will be returned. The distinction between variables from a
file and variables created by a user is necessary because the results
of some analysis routines need to be stored and the lower level im-
plementation needs to know whether to go to disk for the data or
just allocate the space in memory if it is the first time the data is
accessed.

Algorithm Description
max element return the maximum element of a variable.
min element return the minimum element of a variable.
dim avg n computes the average of a variable’s given dimension

at all other dimensions.
dim max n computes the maximum of a variable’s given dimen-

sion at all other dimensions.
dim min n computes the minimum of a variable’s given dimen-

sion at all other dimensions.
dim median n computes the median of a variable’s given dimension

at all other dimensions.
vorticity calculates vorticity from a velocity field on a rectilin-

ear lat/lon grid. Intrepid is used to calculate the partial
derivatives assuming a bilinear approximation of ve-
locity on a grid cell.

divergence calculates divergence from a velocity field on a rec-
tilinear lat/lon grid. Intrepid is used to calculate the
partial derivatives assuming a bilinear approximation
of velocity on a grid cell.

gather gather the value of a variable to root 0.

Table 1: ParGAL Function Table

3.1.3 Analysis

The analysis module contains the analysis routines implemented.
Most of them will take PcVAR’s as input arguments and output re-
sults either into a scalar or another PcVAR, similar to how C++
STL’s generic algorithm works. The analysis functionality is di-
vided into two categories, native and Intrepid-based. Native al-
gorithms, implemented with functionality provided by ParGAL or
MOAB, involve mostly straightforward data-parallel arithmetic op-
erations on mesh-based fields, while Intrepid algorithms are used
for more complex discretization-based algorithms. Table 1 shows
the algorithms that we have implemented so far and their function-
ality.

3.1.4 Support Functions

Support Functions include four major modules. ERR is for pro-
gram errors. We are using C++ exception handling mechanisms
and the exception thrown also contains the file name and source
line number where the exception is thrown. The LOG module pro-
vides logging functionality, the PROF module is for performance
profiling and the MEM module is for memory specific operations.

3.2 Code Samples

1 double m i n e l e m e n t (c o n s t p c v a r& v a r) {
2 / / compute t i m e s t e p s
3 c o n s t s t d : : v e c t o r<i n t>& t s t e p s = v a r . g e t t s t e p s () ;
4 s t d : : v e c t o r<double> m i n t s t e p s (t s t e p s . s i z e ()) ;
5
6 / / s i z e f o r each t i m e s t e p
7 s t d : : s i z e t v a r s z = v a r . g e t s i z e () ;
8
9 / / compute min a t each t i m e s t e p
10 f o r (s t d : : s i z e t i = 0 ; i != t s t e p s . s i z e () ; ++ i) {
11 double∗ v a r p t r = v a r . g e t s t o r a g e (t s t e p s [i]) ;
12 m i n t s t e p s [i] = ∗ s t d : : m i n e l e m e n t (v a r p t r ,
13 v a r p t r + v a r s z) ;
14 v a r . d e l e t e s t o r a g e (t s t e p s [i]) ;
15 }
16 double r e s = 0 . 0 ;
17 double l o c m i n = ∗ s t d : : m i n e l e m e n t (m i n t s t e p s . b e g i n () ,
18 m i n t s t e p s . end ()) ;
19
20 / / compute g l o b a l minimum
21 MPI Reduce(& loc min , &r e s , 1 , MPI DOUBLE ,
22 MPI MIN , 0 , MPI COMM WORLD) ;
23 re turn r e s ;
24}

Listing 1: Algorithm to find the minimum element.

With the current ParGAL design, the various native and
Intrepid-based algorithms can be implemented in a very succinct
way. Listing 1 illustrates the implementation of min element,
which returns the minimum element of a given PcVAR variable.

The interface takes a const reference to a PcVAR variable, and
returns the minimum element as a double. The time steps associated
with the variable can be queried by calling the get tsteps interface
shown on line 3. The vector min steps on line 4 will be used to
store the minimum elements of all time steps for each processor.
Line 7 computes the size for each time step. Through a for loop
over all the time steps, the minimum element of each time step is
stored in the vector min steps. The variable res will store the global
minimum element. Line 17 computes the minimum within each
process. Finally a MPI reduce function (line 21) is used to compute
the global minimum element over all processes and the result res is
returned (line 23).

4 APPLICATION TO CLIMATE: PARNCL
To demonstrate the ability of ParGAL to encapsulate parallel analy-
sis at a high level, we are using ParGAL to create a data-parallel ver-
sion of the NCAR Command Language (NCL). NCL [15] is a free
interpreted language that is widely used for data analysis and visu-
alization especially in the climate community. NCL offers a wide
array of data analysis operations ranging from simple math opera-
tions like finding the minimum element in an array to sophisticated
domain-specific operations. The two-dimensional plots rendered by
NCL are publication quality and highly customizable (climate sci-
entists use two-dimensional figures instead of three-dimensional vi-
sualizations because the aspect ratio of their system is very small).
Climate scientists collectively have developed thousands of lines
of NCL scripts to perform post processing on the output from cli-
mate models and to analyze and visualize climate data. We have
developed a parallel version of the NCL interpreter, ParNCL, that
performs data analysis in parallel using ParGAL and MOAB.

ParNCL reads the climate data from NetCDF files using MOAB
and performs data analysis using the ParGAL library. So far, we
have not modified any visualization algorithms in the NCL inter-
preter. Once the data analysis is complete the single threaded visu-
alization algorithms are used to plot the results.

1 Mult iDVal dim min n (Mult iDVal md , i n t dim)
2 {
3 / / Get pcvar c o r r e s p o n d i n g t o t h e m u l t i−d i m e n s i o n a l
4 / / v a r i a b l e
5 p c v a r∗ v a r = GetPCVarFromMDVal (md) ;
6
7 / / Get i n f o abou t t h e pcvar
8 c o n s t s t d : : v e c t o r<pcdim>& dims = var−>g e t d i m s () ;
9 c o n s t s t d : : v e c t o r<i n t>& t s t e p s = var−>g e t t s t e p s () ;

10
11 . . .
12 / / Cr ea t e a r e s u l t pcvar t o ho ld t h e minimum v a l
13 p c v a r ∗m i n v a r = new p c v a r (min var name ,
14 dt ,
15 min va r d ims ,
16 . . .) ;
17
18 / / C a l c u l a t e d im min n over g i v e n dim
19 dim min n (∗ (v a r) , ∗(m i n v a r) , dim) ;
20
21 . . .
22 / / Cr ea t e t h e r e s u l t m u l t i−d i m e n s i o n a l var
23 Mult iDVal res md = Crea t eMul t iDVa l (min var ,
24 . . .) ;
25
26 re turn res md ;
27 }

Listing 2: Finding the minimum of a multi-dimensional variable for a
given dimension over all other dimensions using ParGAL.

The multi-dimensional variables read from the NetCDF files are
stored in a parallel mesh database provided by MOAB. A PcVAR
variable is created for each of these multi-dimensional variables and
stored with it. This PcVAR variable is used for all data analysis
operations that use ParGAL.

Listing 2 illustrates how ParNCL uses ParGAL to find the mini-
mum of a multi-dimensional variable for a given dimension over all
other dimensions. In the pseudo code MultiDVal is an internal data
structure in ParNCL (and NCL) used to store multi-dimensional
variables. To calculate the minimum, first the PcVAR correspond-
ing to the multi-dimensional variable is retrieved as shown in line
5. Then a new PcVAR is created to store the result, which resides
on the mesh, as shown in line 13. The minimum is calculated us-
ing the data analysis function, dim min n() (Table 1), provided by
ParGAL. To plot these variables the data corresponding to the vari-
able is gathered using a gather() (Table 1) function, provided by

ParGAL, before passing it to the NCL visualization algorithms.

4.1 Comparison of ParNCL Vorticity Calculation
In this section we compare the performance of ParNCL with NCL
on a typical analysis function. As discussed above, ParNCL uses
ParGAL and performs data analysis in parallel while NCL performs
the data analysis using a single thread. We compare the perfor-
mance of the single threaded NCL interpreter with ParNCL using
the NCL function uv2vrF(), a function that computes the vorticity
given the u and v wind components on a fixed rectangular grid.

The native NCL vorticity function uses spherical harmonic anal-
ysis [2] which requires global data on a structured spherical grid
and provides a very accurate representation of vorticity. However,
it is not applicable to data on limited domains or on unstructured
grids and is not easily parallelizable. In contrast, the algorithm in
ParGAL has been developed using a finite element approach that is
highly parallelizable, works equally well on global and limited do-
mains, and is easily extensible to unstructured grids. In the ParGAL
approach a formal L2 projection is used to approximate the vorticity
from a nodal velocity field. This method generates a simple linear
system whose components are obtained by integrating over cells,
thereby eliminating the pole singularity in the case when nodes are
located at the poles. The implementation of the algorithm uses In-
trepid to provide basis function definitions, numerical quadrature
rules, and cell-based numerical operations. The linear system is
solved using an iterative solver from the AztecOO package [10]
and a multi-level preconditioner from the ML package [9] both part
of the Trilinos framework [11].

Figure 2: NCL visualization of vorticity calculated from the same U
and V field by (a) the original NCL routine and (b) the ParGAL routine

Figure 2 shows that the two algorithms produce nearly identical
results visually. To compare performance, we measured the time

taken to compute vorticity with both the original spherical harmonic
NCL function and the ParGAL function as called by our parallel
version of NCL, ParNCL. We used a single time-step data set from
an atmospheric general circulation model with a horizontal grid of
384x576 points and 26 vertical levels. The two-dimensional vor-
ticity field is calculated separately on each level. We compared
the time for a structured grid because the NCL algorithm can only
work on structured grids. Performance results were obtained from

1

10

100

1000

1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
ti
m
e
(s
e
c
)

Number of processors

ParNCL
ParNCL-Ideal

NCL

Figure 3: Total Execution time for calculating the vorticity field on
each level of 384x576x26 grid vs. number of processors

the Fusion cluster at Argonne National Laboratory. Each compute
node in the cluster has two Nehalem 2.6GHz Pentium Xeon pro-
cessors (8 cores), 36GB of memory and uses the Infiniband QDR
network for communication. We compared NCL version 6.0.0 Beta
with ParNCL (developed from NCL version 6.0.0 Beta). ParGAL
was compiled with MVAPICH2 1.4.1, PNetCDF 1.2.0, MOAB 4.5
and Trilinos 10.6.4.

Fig 3 shows that the ParGAL vorticity algorithm scales very
well. It does not start out as fast as the NCL algorithm because Par-
GAL’s is more general and there is a cost to that generality. Also
at this point we have only focused on correctness and functional-
ity in ParGAL and not performance. However it is still possible to
surpass the NCL performance on a modest number of cores. While
64 processors is small in the petascale age, introducing distributed
memory algorithms for regular use on any number of processors
will be a paradigm shift for most analysis workflows. Also DAV
clusters are still shared systems and its unlikely data analysis will
be routinely performed on the entire machine.

5 CONCLUSION

Post-processing analysis of petascale model output is a crucial com-
ponent of the scientific process in computational science. ParGAL
is a library for performing many analysis functions that introduces
both the ability to employ data-parallelism and operate on both
structured and unstructured grids. To build ParGAL, we have lever-
aged several well-engineered software libraries that provide key ca-
pabilities in the area of parallel mesh and mesh-based data, parallel
I/O, and mesh-based discretizations. Using libraries for this pur-
pose not only simplifies construction of an integrated data anal-
ysis capability, but makes the post-processing operations similar
(both mathematically and algorithmically) to the operations in the
original simulation. Our early results comparing performance to a
well established visualization and analysis package are encourag-
ing. ParGAL provides high-level functions that hide the details of
the distributed memory parallelism from the end user, potentially
allowing the familiar script-based analysis approach to scale in par-

allel. NCL has over 300 built-in functions, and our plan is to imple-
ment data-parallel versions of the most widely used ones. We will
also add the ability to work with additional file formats and grid
types. We believe ParGAL and its core set of functions will sig-
nificantly improve the ability of scientists to gain knowledge from
their model simulations.

ACKNOWLEDGEMENTS

This work is part of the Parallel Analysis Tools and New Visualiza-
tion Techniques for Ultra-Large Climate Data Sets (ParVis) project
supported by the Earth System Modeling Program of the Office of
Biological and Environmental Research of the U.S. Department of
Energy’s Office of Science. The project is co-sponsored by the
U.S. National Science Foundation via contributions from the Na-
tional Center for Atmospheric Research, Boulder, CO. We grate-
fully acknowledge the computing resources provided on “Fusion,”
a 320-node computing cluster operated by the Laboratory Comput-
ing Resource Center at Argonne National Laboratory. Sandia Na-
tional Laboratories is a multi-program laboratory managed and op-
erated by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

[1] Hierarchical data format version 5. http://www.hdfgroup.org/HDF5,
Sept. 2011.

[2] J. C. Adams and P. N. Swarztrauber. Spherpack 3.0: A model devel-
opment facility. Monthly Weather Review, 127:1872–1878, 1999.

[3] P. Bochev, H. Edwards, R. Kirby, K. Peterson, and D. Ridzal. Solving
pdes with intrepid. Scientific Programming, In print., 2012.

[4] P. Bochev and M. Hyman. Principles of mimetic discretizations. In
D. N. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, and M. Shashkov,
editors, Compatible Discretizations, Proceedings of IMA Hot Topics
Workshop on Compatible Discretizations, volume IMA 142, pages
89–120. Springer Verlag, 2006.

[5] P. Bochev and K. Peterson. A new control volume finite element
method for the stable and accurate solution of the drift-diffusion equa-
tions on general unstructured grids. Int. J. Num. Meth. Engrg., Sub-
mitted, 2012.

[6] P. B. Bochev, K. Peterson, and C. M. Siefert. Analysis and computa-
tion of compatible least-squares methods for div-curl equations. SIAM
Journal on Numerical Analysis, 49(1):159–181, 2011.

[7] J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig,
R. Jacob, and S. Mickelson. Computational performance of the ultra-
high resolution capability in the community earth system model. Int.
J. High Perf. Comp. Appl., 26(5):5–16, 2012.

[8] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan.
Zoltan data management services for parallel dynamic applications.
Computing in Science and Engineering, 4(2):9097, 2002.

[9] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala. ML 5.0 smoothed
aggregation user’s guide. Technical Report SAND2006-2649, Sandia
National Laboratories, 2006.

[10] M. A. Heroux. AztecOO user guide. Technical Report SAND2004-
3796, Sandia National Laboratories, 2007.

[11] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the trilinos project.
ACM Trans. Math. Softw., 31(3):397–423, 2005.

[12] J. P. Holdren, E. Lander, and H. Varmus. Report to the Presi-
dent and Congress: Designing a Digital Future: Federally funded
research and development in networking and information tech-
nology. http://www.nitrd.gov/pcast-2010/report/
nitrd-program/pcast-nitrd-report-2010.pdf, 2010.

[13] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel
netCDF: A high-performance scientific I/O interface. In Proceedings

of SC2003: High Performance Networking and Computing, SC ’03,
pages 39–, Phoenix, AZ, November 2003. IEEE Computer Society
Press.

[14] MPI-2: Extensions to the message-passing interface. The MPI Forum,
July 1997.

[15] NCL – NCAR Command Language (version 6.0.0) [software]. Boul-
der, Colorado: UCAR/NCAR/CISL/VETS. http://dx.doi.
org/10.5065/D6WD3XH5, 2012.

[16] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W.
Shen, T.-Y. Lee, and A. Chaudhuri. Scalable parallel building blocks
for custom data analysis. In 2011 IEEE Symposium on Large Data
Analysis and Visualization (LDAV), pages 105–112, 2011.

[17] R. Rew and G. Davis. Netcdf: an interface for scientific data access.
Computer Graphics and Applications, IEEE, 10(4):76 –82, july 1990.

[18] N. Samatova, M. Branstetter, A. Ganguly, R. Hettich, S. Khan,
G. Kora, J. Li, X. Ma, C. Pan, A. Shoshani, and S. Yoginath. High
performance statistical computing with Parallel R: Applications to bi-
ology and climate modeling. In Journal of Physics: Conference Series
SciDAC 2006, volume 46, pages 505–509, 2006.

[19] B. Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000.

[20] T. J. Tautges. MOAB structured mesh interface. http:
//svn.mcs.anl.gov/repos/ITAPS/MOAB/trunk/src/
moab/ScdInterface.hpp.

[21] T. J. Tautges. MOAB wiki. http://trac.mcs.anl.gov/
projects/ITAPS/wiki/MOAB.

[22] T. J. Tautges, J. Kraftcheck, N. Bertram, V. Sachdeva, and J. Mater-
lein. Mesh interface resolution and ghost exchange in a parallel mesh
representation. In Workshop on Large-Scale Parallel Processing, held
at the IEEE International Parallel and Distributed Processing Sympo-
sium, Shanghai, China, May 2012. IEEE.

[23] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst.
MOAB: a Mesh-Oriented database. SAND2004-1592, Sandia Na-
tional Laboratories, Apr. 2004. Report.

[24] V. Vishwanath, M. Hereld, and M. E. Papka. Toward simulation-
time data analysis and I/O acceleration on leadership-class systems.
In 2011 IEEE Symposium on Large Data Analysis and Visualization
(LDAV), pages 9–14, 2011.

[25] W. Washington. Scientific grand challenges: Challenges in cli-
mate change science and the role of computing and the extreme
scale. http://science.energy.gov/˜/media/ber/pdf/
Climate_report.pdf, 2008.

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (Argonne).
Argonne, a U.S. Department of Energy Office of Science labora-
tory, is operated under Contract No. DEAC02- 06CH11357. The
U.S. Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said arti-
cle to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf
of the Government.

